Proposal and demonstration of lock-in pixels for indirect time-of-flight measurements based on germanium-on-silicon technology

2018 
We propose the use of germanium-on-silicon technology for indirect time-of-flight depth sensing as well as three-dimensional imaging applications, and demonstrate a novel pixel featuring a high quantum efficiency and a large frequency bandwidth. Compared to conventional silicon pixels, our germanium-on-silicon pixels simultaneously maintain a high quantum efficiency and a high demodulation contrast deep into GHz frequency regime, which enable consistently superior depth accuracy in both indoor and outdoor scenarios. Device simulation, system performance comparison, and electrical/optical characterization of the fabricated pixels are presented. Our work paves a new path to high-performance time-of-flight sensors and imagers, as well as potential adoptions of eye-safe lasers (wavelengths > 1.4 {\mu}m) that fall outside of the operation window of conventional silicon pixels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []