Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid

2020 
For the past three decades, the coordination-driven self-assembly of three-dimensional structures has undergone rapid progress; however, parallel efforts to create large discrete two-dimensional architectures—as opposed to polymers—have met with limited success. The synthesis of metallo-supramolecular systems with well-defined shapes and sizes in the range of 10–100 nm remains challenging. Here we report the construction of a series of giant supramolecular hexagonal grids, with diameters on the order of 20 nm and molecular weights greater than 65 kDa, through a combination of intra- and intermolecular metal-mediated self-assembly steps. The hexagonal intermediates and the resulting self-assembled grid architectures were imaged at submolecular resolution by scanning tunnelling microscopy. Characterization (including by scanning tunnelling spectroscopy) enabled the unambiguous atomic-scale determination of fourteen hexagonal grid isomers. Metal-mediated self-assembly in solution typically leads to small two- and three-dimensional architectures on scales smaller than 10 nm, but now a series of large, discrete, two-dimensional supramolecular hexagonal grids have been prepared through a combination of intra- and intermolecular coordination interactions. These 20-nm-wide grids have been imaged at submolecular resolution using scanning tunnelling microscopy
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    39
    Citations
    NaN
    KQI
    []