Limited Proteolysis and Gel Electrophoresis in the Presence of Metal Cations: Au(III)-binding Luminescent Domain in Serum Albumins

2021 
The purpose of the presented protocols is to determine the domain of Au(III) binding in BSA. The BSA-Au(III) compound exhibits ultraviolet (UV)-excitable red luminescence (λem = 640 nm), with unusual Stokes shifts compared to the innate UV/blue fluorescence arising from the aromatic residues. Red-luminescent complexes are formed in highly alkaline conditions above pH 10 and require a conformation change within the protein to occur. In addition, preservation of Cys-Cys disulfide bonds in BSA is necessary to obtain this red luminescence. In order to understand the mechanism of this luminescence, elucidation of the luminophore-forming Au(III) binding site is essential. A facile way to assess the luminophore-forming site would be to (1) predictably fragment the protein by enzymatic digestion, (2) react the obtained fragments with Au(III), then (3) perform gel electrophoresis to observe the well-separated fragment bands and analyze the in-gel red luminescence. However, due to the alkaline conditions and the reaction with metal cations, new limited proteolysis techniques and gel electrophoresis conditions must be applied. Particularly, the presence of metal cations in gel electrophoresis can make the band separations technically difficult. We describe this new protocol in steps to identify the red-luminophore-forming metal binding domain in BSA. This protocol can thus be applied for analyzing protein fragments that must remain in a non-denatured or a partially denatured state, in the presence of metal cations. Because the majority of proteins need metal cations to function, analyses of metal-bound proteins are often desired, which have relied on x-ray crystallography in the literature. This method, on the other hand, could be used in supplement to study the interactions of proteins with metal cations without requiring the protein crystallization and at a desired pH condition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []