Structure and Function of the Fgd Family of Divergent FYVE Domain Proteins

2018 
FYVE domains are highly conserved protein modules that typically bind phosphatidylinositol 3-phosphate (PI3P) on the surface of early endosomes. Along with pleckstrin homology (PH) and phox homology (PX) domains, FYVE domains are the principal readers of the phosphoinositide (PI) code that mediate specific recognition of eukaryotic organelles. Of all the human FYVE domain containing proteins, those within the faciogenital dysplasia (Fgd) subfamily are particularly divergent and couple with GTPases to exert unique cellular functions. The subcellular distributions and functions of these evolutionarily conserved signal transducers, which also include Dbl homology (DH) and two PH domains, are discussed here to better understand the biological range of processes that such multidomain proteins engage in. Determinants of their various functions include specific multidomain architectures, posttranslational modifications including PIP stops that have been discovered in sorting nexins, PI recognition motifs, and ph...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    12
    Citations
    NaN
    KQI
    []