Drainage Ratio as a Strong Predictor of Allochthonous Carbon Budget in Hemiboreal Lakes

2018 
We assessed the allochthonous organic carbon (OC) budgets for thirteen hemiboreal lakes using a simple equilibrium model coupled with a Bayesian framework for estimating parameter distribution and uncertainty. Model inputs consisted of hydrological, bathymetric and chemical data that are easily measurable at the lake and basin scale. Among the model outputs were mean OC loads (5–123 g m⁻² y⁻¹), exports (1.10⁻³–108 g m⁻² y⁻¹), mineralization (3–12 g m⁻² y⁻¹), and sedimentation (2–6 g m⁻² y⁻¹). “Active” lake-catchment systems received and emitted the largest amounts of allochthonous OC, whereas lakes depending mostly on atmospheric inputs exhibited much more modest OC fluxes. Simulated organic carbon retention varied accordingly from 12% in some drainage lakes to 99% in seepage lakes. Lake allochthonous OC loads and exports were strongly correlated to drainage ratio (catchment area/lake area, R²: 0.89 and 0.92, respectively) and to forest ratio (catchment forested area/lake area, R²: 0.86 and 0.89), but not to wetland ratio. The simplicity of the model makes it easily transposable to a large variety of lakes. For a better insight into carbon processing, we suggest to follow a more integrative approach accounting for interactions between lake hydrology and catchment land cover.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []