Experimental evidence for topological phases in the magnetoconductance of 2DEG-based hybrid junctions

2020 
Several theoretical studies have recently predicted that the Majorana phases could be realized as quantized plateaus in the magnetoconductance of the artificially engineered hybrid junctions based on two-dimensional electron gases (2DEG) under fully out-of-plane magnetic fields. The large transverse Rashba spin-orbit interaction in 2DEG together with a strong orbital effect due to magnetic fields yield topological phase transitions to nontrivial phases hosting Majorana modes. Such Majorana modes are formed at the ends of 2DEG-based wires with a hybrid superconductor-semiconductor integrity. Here, we report on the experimental observation of such topological phases in hybrid junctions on an In0.75Ga0.25As 2DEG platform by sweeping small out-of-plane magnetic fields (B< 100 mT) and probing the conductance to highlight the characteristic quantized magnetoconductance plateaus. The observed signature of topological phases in small out-of-plane magnetic fields in planar hybrid junctions suggests that In0.75Ga0.25As heterostructure affords a promising material platform for the realization of scalable topological circuits for the applications in quantum technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []