Scaling star-coupler-based optical networks for avionics applications

2013 
In this work scaling of an optical broadcast-and-select network based on a passive star coupler is explored for avionics applications. Each client in the network is equipped with a transmitter unit and a multichannel receiver capable of receiving signals from all other clients connected to the star coupler. We propose a connecting node concept to scale the number of clients supported by the architecture. These connecting nodes act as bridges between star couplers, enabling the organization of several star couplers into a topology with additional clients. This design is modeled in the PhoenixSim simulation environment, and system-level simulation results are reported. We then propose the ring topology and dimension-N topology to interconnect and scale star couplers. Finally we compare the ring and dimension-N topologies in terms of scalability limit at different crossing traffic loads, revealing the trade-offs between latency, system complexity, and scalability. Our study shows that a robust, low-latency network of up to hundreds of clients, sufficient for current and next-generation avionics applications, can be built using off-the-shelf and near-term commercial technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    19
    Citations
    NaN
    KQI
    []