Detecting Cerebral Hypoxia-Ischemia of Newborn Piglets Using Spatially-Resolved Near-Infrared Spectroscopy

2008 
As a non-invasive technique for measuring tissue oxygenation, near-infrared spectroscopy (NIRS) has increasing applications in detecting cerebral hypoxia-ischemia. The authors introduced the basic principle of the NIRS oximeter developed independently by our group (TSAH-100). The authors achieved the optimal coupling between the probe and the detected cerebral tissue. The present study investigated different regional oxygen saturations of brain (rSO2) measured non-invasively by NIRS, arterial blood oxygen saturation (SaO2) measured invasively by blood gas analysis and physiological parameters in newborn pigs with different hypoxia, in order to prove if the non-invasively cerebral rSO2 can indicate cerebral oxygenation status in clinical practice. Using this oximeter, cerebral rSO2 of 28 newborn piglets under different oxygenation status was detected. After mechanical ventilation and inhalation of 8%-17% oxygen for 30min in the newborn pigs, the pigs were grouped according to the inhalation of oxygen. With the inhalation of 13%-17% oxygen was mild hypoxia group, with 10%-13% was moderate hypoxia group, and with 8%-10% was severe hypoxia group. There were 4 animals in mild hypoxia group, 8 animals in moderate hypoxia group, 12 animals in severe hypoxia group and 4 animals were in the normal control group. The physiological parameters were monitored during the experiment. The SaO2 were invasively measured by blood gas analysis after the experiment. The results indicate that both rSO2 and SaO2 decreased after different degree of hypoxia and there was a good correlation between cerebral rSO2 non-invasively measured by NIRS and SaO2 invasively measured by blood gas analysis (p0.001). Cerebral rSO2 was also consistent with the degree of hypoxia and the changes in physiological parameters after hypoxia. The arterial pH and the mean arterial pressure (MAP) in the severe hypoxia group was lower than that in the control group (p0.05). The blood lactic acid in the severe hypoxia group was higher than that in the control group (p0.05). Thus, the rSO2 can accurately and directly indicate cerebral oxygenation status and can also replace the SaO2 invasively measured by blood gas analysis. Cerebral hypoxia-ischemia can be non-invasively and conveniently diagnosed using NIRS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []