Solvent engineering approach via introducing poly (3, 4-ethylene dioxy-thiophene)–poly (styrene sulfonate) (PEDOT:PSS) into photosensitive absorber layer for ambient temperature processed efficient inverted planar perovskite solar cells

2018 
Abstract The quality of photosensitive absorber layer plays an important role in the performance of organic-inorganic hybrid perovskite solar cells (PSCs). Here, for the first time a classic hole transport material, poly (3, 4-ethylene dioxy-thiophene)-poly (styrene sulfonate) (abbreviated as PEDOT:PSS) was introduced as additive directly into the CH 3 NH 3 PbI 3−x Cl x perovskite absorber. On controlled fine-tuning of PEDOT:PSS concentration within perovskite resulted into the high-quality films with large crystal grains that ultimately resulted into improved optoelectronic and charge transport properties. Due to the complexation between the PEDOT:PSS and CH 3 NH 3 PbI 3−x Cl x the defects in the active layer of perovskite as well as the passivation of back-and-front contact recombination occurred that leads to possible trap state healing in bulk as well at interfaces and this resulted into a longer lifetime charge carrier compare to the perovskite film without PEDOT:PSS additives. Solar cells prepared using 1.5 v% PEDOT:PSS and perovskite resulted an improved power conversion efficiency (PCE) of 17.56%. This finding provided a simple way to fabricate efficient planar perovskite solar cells for the commercial applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    7
    Citations
    NaN
    KQI
    []