Time-Dependent Density Functional Theory Applied to Average Atom Opacity.

2021 
We focus on studying the opacity of iron, chromium, and nickel plasmas at conditions relevant to experiments carried out at Sandia National Laboratories [J. E. Bailey et al., Nature 517, 56 (2015)]. We calculate the photo-absorption cross-sections and subsequent opacity for plasmas using linear response time-dependent density functional theory (TD-DFT). Our results indicate that the physics of channel mixing accounted for in linear response TD-DFT leads to an increase in the opacity in the bound-free quasi-continuum, where the Sandia experiments indicate that models under-predict iron opacity. However, the increase seen in our calculations is only in the range of 5{10%. Further, we do not see any change in this trend for chromium and nickel. This behavior indicates that channel mixing e?ects do not explain the trends in opacity observed in the Sandia experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []