WO3 processed by direct laser interference patterning for NO2 detection

2019 
Abstract In this paper two kind of sensors based on WO3 sputtered by magnetron sputtering and annealed at 600 °C have been studied. The first kind was processed by two-dimensional direct laser interfering patterning (DLIP) and the second one without any additional treatment. Morphological and structural characterization have shown a hole structure in a periodic line-pattern for the DLIP-processed sensors and a flat surface for the only-annealed sensors, both with a tetragonal WO3 phase. TOF-SIMS analysis has revealed that the first WO3 layers are reduced for both samples, which could improve sensing performance. Promising response enhancement of DLIP-processed sensors has been observed for low concentrations of NO2 (from 0.5 ppm to 5 ppm) at 200 °C, lowering the limit of detection (LOD) to 10 ppb, half of the LOD of the only-annealed sensors (20 ppb). Cross sensitivity to CO and HCHO have been investigated and the sensing mechanisms discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    4
    Citations
    NaN
    KQI
    []