Ion toxicity and the development of a salinity toxicity relationship (STR) model for marine species
1994
Salinity in effluents can cause acute toxicity to marine organisms. The toxicity of the water can be due to an excess or deficiency of common ions, which usually are not thought of as toxicants. In order to develop an understanding of this phenomenon, laboratory toxicity tests were conducted to determine the effects of single ion deficiency, single ion excess, multiple ion deficiency, multiple ion excess, and total salinity on survival of three common marine test organisms (Mysidopsis bahia, Cyprinidon variegatus, and Menidia beryllina). The ions which were manipulated in these studies were Na{sup +}, K{sup +}, Ca{sup ++}, Mg{sup ++}, Sr{sup ++}, Cl{sup {minus}}, Br{sup {minus}}, SO{sub 4}{sup {minus}{minus}}, HCO{sub 3}{sup {minus}}, and B{sub 4}O{sub 7}{sup {minus}{minus}}. Results indicate that Ca{sup ++} and K{sup +} are essential ions at normal salinities, since the deficiency of these two ions causes mortality. In contrast, the complete deficiency of Mg{sup ++}, Sr{sup ++}, B{sub 4}O{sub 7}{sup {minus}{minus}}, and HCO{sub 3}{sup {minus}} did not affect survival. The single ion excess studies demonstrated that K{sup +}, Ca{sup ++}, Mg{sup ++}, and B{sub 4}O{sub 7}{sup {minus}} were acutely toxic in excess at normal salinities. Total salinity studies determined the salinity tolerance range for each species, withmore » upper and lower LC{sub 50}s for Mysidopsis bahia at 44 g/L and 8 g/L, for Cyprinidon variegatus at 73 g/L and < 0 g/L, and for Menidia beryllina at 45 g/L and < 0 g/L. These data will be used to develop a model to predict toxicity due to common ions.« less
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI