Electrical and mechanical characteristics of nanosecond pulsed sliding dielectric barrier discharges with different electrode gaps

2015 
This study proposes the characterization of a surface sliding discharge that extends over a length of 80 mm. The gas ionization is caused by series of high voltage pulses with nanosecond rising and decaying times while ion drift is forced by a negative DC component. Different plasma diagnostics such as electrical measurements, iCCD visualizations and strioscopy have been performed. They highlight that a threshold mean electric field between both air-exposed electrodes is required to fully establish a sliding discharge. Compared to a single nanosecond pulsed dielectric barrier discharge, the sliding discharge results in an energy consumption increase. Moreover, the pressure wave induced by the discharge is strongly impacted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    3
    Citations
    NaN
    KQI
    []