Infrared + vacuum ultraviolet two-color ionization spectroscopy of neutral metal complexes based on a tunable vacuum ultraviolet free-electron laser

2020 
This paper describes an experimental technique for studying neutral metal complexes using infrared + vacuum ultraviolet (IR+VUV) two-color ionization spectroscopy based on a tunable VUV free-electron laser (VUV-FEL). The preliminary IR spectroscopy results of mass-selected nickel tetracarbonyl are reported in this work. The results demonstrate that the tunable VUV-FEL light allows the selective ionization of a given neutral cluster free of confinement along with the recording of well-resolved IR spectra. As the ionization energies of many neutral clusters are accessible by a broadly tunable VUV-FEL (50–150 nm) and near-threshold ionization can be readily achieved, the proposed experimental method offers unique possibilities for the size-specific study of a wide variety of confinement-free neutral clusters.This paper describes an experimental technique for studying neutral metal complexes using infrared + vacuum ultraviolet (IR+VUV) two-color ionization spectroscopy based on a tunable VUV free-electron laser (VUV-FEL). The preliminary IR spectroscopy results of mass-selected nickel tetracarbonyl are reported in this work. The results demonstrate that the tunable VUV-FEL light allows the selective ionization of a given neutral cluster free of confinement along with the recording of well-resolved IR spectra. As the ionization energies of many neutral clusters are accessible by a broadly tunable VUV-FEL (50–150 nm) and near-threshold ionization can be readily achieved, the proposed experimental method offers unique possibilities for the size-specific study of a wide variety of confinement-free neutral clusters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []