Inter-influence of Temperature-time-reflectivity in the Coal Metamorphism Thermodynamics Equation (CMTE)

2021 
The influence and control of time and temperature on coalification are comprehensive. In order to quantitatively analyze the thermal kinetics of coal metamorphosis process by temperature and time, the qualitative analysis of coal metamorphosis thermodynamic equation (CMTE) based on Wu Chonglong was further verified from the mathematical point of view. Wu Chong Long's Coal Metamorphism Thermodynamics Equation (CMTE) is a ternary equation containing coal forming period or metamorphic age (time), metamorphic temperature (temperature) and metamorphic degree (reflectivity). The temperature calculated by fixing time and reflectivity is the lowest theoretical metamorphic temperature. The reflectivity calculated by fixing time and temperature is the maximum theoretical metamorphic degree. The “time-temperature ratio” is defined as the equivalent of extending million years to increasing 1°C temperature regarding coal metamorphism. This ratio is used to compare the impact of extending time or increasing temperature on improving the metamorphic degree and its significance. The results showed that in the same coal forming period, the ratio is decreased with the reflectivity increasing; at the same reflectivity, the ratio decreased with younger coal forming period. At Ro=6.1%, the calculated ratio is 3.67, which means, at Ro=6.1%, increasing 1°C is equaled extending 3.67 million.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []