The tropical superpotential for $\mathbb{P}^2$
2020
We present an extended worked example of the computation of the tropical superpotential considered by Carl--Pumperla--Siebert. In particular we consider an affine manifold associated to the complement of a non-singular genus one plane curve, and calculate the wall and chamber decomposition determined by the Gross--Siebert algorithm. Using the results of Carl--Pumperla--Siebert we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, which we demonstrate to be identical to the Laurent polynomials predicted by Coates--Corti--Galkin--Golyshev--Kaspzryk to be mirror to $\mathbb{P}^2$.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI