Neoadjuvant Sorafenib Treatment of Clear Cell Renal Cell Carcinoma and Release of Circulating Tumor Fragments

2014 
BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is characterized by high constitutive vascular endothelial growth factor A (VEGF-A) production that induces a specific vascular phenotype. We previously reported that this phenotype may allow shedding of multicellular tumor fragments into the circulation, possibly contributing to the development of metastasis. Disruption of this phenotype through inhibition of VEGF signaling may therefore result in reduced shedding of tumor fragments and improved prognosis. To test this hypothesis, we investigated the effect of neoadjuvant sorafenib treatment on tumor cluster shedding. PATIENTS AND METHODS: Patients with renal cancer (n = 10, of which 8 have ccRCC) received sorafenib for 4 weeks before tumor nephrectomy. The resection specimens were perfused, and the perfundate was examined for the presence of tumor clusters. Effects of the treatment on the tumor morphology and overall survival were investigated (follow-up of 2 years) and compared with a carefully matched control group. RESULTS: Neoadjuvant sorafenib treatment induced extensive ischemic tumor necrosis and, as expected, destroyed the characteristic ccRCC vascular phenotype. In contrast to the expectation, vital groups of tumor cells with high proliferation indices were detected in postsurgical renal venous outflow in 75% of the cases. Overall survival of patients receiving neoadjuvant treatment was reduced compared to a control group, matched with regard to prognostic parameters. CONCLUSIONS: These results suggest that neoadjuvant sorafenib therapy for ccRCC does not prevent shedding of tumor fragments. Although this is a nonrandomized study with a small patient group, our results suggest that neoadjuvant treatment may worsen survival through as yet undefined mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    13
    Citations
    NaN
    KQI
    []