DO STEM TAPER MICROGROOVES INFLUENCE TAPER CORROSION IN TOTAL HIP ARTHROPLASTY? A RETRIEVAL STUDY

2016 
Introduction Previous studies of retrieved CoCr alloy femoral heads have identified imprinting of the stem taper surface features onto the interior head bore, leading researchers to hypothesize that stem taper microgrooves may influence taper corrosion. However, little is known about the role of stem taper surface morphology on the magnitude of in vivo corrosion damage. We designed a matched cohort retrieval study to examine this issue. Methods From a multi-institutional retrieval collection of over 3,000 THAs, 120 femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 60 CoCr head-stem pairs with a smooth stem taper were matched with 60 CoCr head-stem pairs having a micro-grooved surface, based on implantation time, flexural rigidity, apparent length of taper engagement, and head size. This study was adequately powered to detect a difference of 0.5 in corrosion scores between the two cohorts, with a power of 82% and 95% confidence. Both cohorts included CoCr and Ti-6-4 alloy femoral stems. A high precision roundness machine (Talyrond 585, Taylor Hobson, UK) was used to measure surface morphology and categorize the stem tapers into smooth vs. micro-grooved categories. Fretting and corrosion damage at the head/neck junction was characterized using a modified semi-quantitative adapted from the Goldberg method by three independent observers. This method separated corrosion damage into four visually determined categories: minimal, mild, moderate and severe damage. Results Mild to severe damage (Fretting Corrosion Score ≥ 2) was observed in 75% of the 120 CoCr femoral heads (78% of the heads mated with micro-grooved stems (47/60), Fig. 1A) and 72% of the heads mated with smooth stems (43/60, Fig 1B). Fretting and corrosion damage was not significantly different between the two cohorts when evaluated at the CoCr femoral head bore (p =0.105, Mann Whitney test, Fig. 2A) or the male stem tapers (p =0.428, Fig. 2B). No implant or patient factors were associated with fretting corrosion; corrosion scores were not significantly associated with stem alloy in the two cohorts (p=0.669, Mann-Whitney test). Discussion The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion. We accounted for implant, patient, and clinical factors that may influence in vivo taper corrosion with the matched cohort design and by post hoc statistical analyses. However, this study is limited by the semi-quantitative method used for evaluating damage in these components. Therefore, additional research will be necessary to quantify the volume of metal release from these two cohorts. To view tables/figures, please contact authors directly.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []