TET2 drives 5hmc marking of GATA6 and epigenetically defines pancreatic ductal adenocarcinoma transcriptional subtypes.

2021 
Background and Aims Pancreatic ductal adenocarcinoma (PDAC) is characterised by advanced disease stage at presentation, aggressive disease biology and resistance to therapy resulting in extremely poor five-year survival Methods Genome-wide epigenetic mapping of DNA modifications 5-methylcytosine (5mc) and 5-hydroxymethylcytosine (5hmc) using oxidative bisulphite sequencing (oxBS) from formalin embedded sections. Bioinformatics using iCluster and mutational profiling to identify overlap with transcriptional signatures in FFPE from resected patients and confirmation in vivo. Results We find that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci including GATA6 that promote differentiated classical-pancreatic subtypes. We show that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5mc-hydroxylase TET2. Furthermore, we find that SMAD4 directly supports TET2 levels in classical-pancreatic tumors and loss of SMAD4 expression is associated reduced 5hmc, GATA6 and squamous-like tumors. Importantly, enhancing TET2 stability using Metformin and VitaminC/ascorbic acid (AA) restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. Conclusions We identify epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data shows that restoring epigenetic control increases biomarkers of classical-pancreatic tumors which are associated with improved therapeutic responses and survival.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    4
    Citations
    NaN
    KQI
    []