Double Photodetachment of F–·H2O: Experimental and Theoretical Studies of [F·H2O]+

2018 
Double photodetachment of the cluster F–·H2O in a strong laser field is explored in a combined experimental–theoretical study. Products are observed experimentally by coincidence photofragment imaging following double ionization by intense laser pulses. Theoretically, equation of motion coupled cluster calculations (EOM-CC), suitable for modeling strong correlation effects in the electronic wave function, shed light on the Franck–Condon region, and ab initio molecular dynamics simulations also performed using EOM-CC methods reveal the fragmentation dynamics in time on the lowest-lying singlet and triplet states of [F·H2O]+. The simulations show the formation of H2O+ + F, which is the predominant experimentally observed product channel. Suggestions are proposed for the formation mechanisms of the minor products, for example, the very interesting H2F+, which involves significant geometrical rearrangement. Analysis of the results suggests interesting future directions for the exploration of photodetachment o...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []