Encaged molecules in external electric fields: A molecular “tug-of-war”

2016 
Response of polar molecules CH3OH and H2O2 and a non-polar molecule, CO2, as “guests” encapsulated in the dodecahedral water cage (H2O)20 “host,” to an external, perturbative electric field is investigated theoretically. We employ the hybrid density-functionals M06-2X and ωB97X-D incorporating the effects of damped dispersion, in conjunction with the maug-cc-pVTZ basis set, amenable for a hydrogen bonding description. While the host cluster (cage) tends to confine the embedded guest molecule through cooperative hydrogen bonding, the applied electric field tends to rupture the cluster-composite by stretching it; these two competitive effects leading to a molecular “tug-of-war.” The composite remains stable up to a maximal sustainable threshold electric field, beyond which, concomitant with the vanishing of the HOMO-LUMO gap, the field wins over and the cluster breaks down. The electric-field effects are gauged in terms of the changes in the molecular geometry of the confined species, interaction energy, mo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []