Transferable Next-Generation Force Fields from Simple Liquids to Complex Materials

2015 
ConspectusMolecular simulations have had a transformative impact on chemists’ understanding of the structure and dynamics of molecular systems. Simulations can both explain and predict chemical phenomena, and they provide a unique bridge between the microscopic and macroscopic regimes. The input for such simulations is the intermolecular interactions, which then determine the forces on the constituent atoms and therefore the time evolution and equilibrium properties of the system. However, in practice, accuracy and reliability are often limited by the fidelity of the description of those very same interactions, most typically embodied approximately in mathematical form in what are known as force fields.Force fields most often utilize conceptually simple functional forms that have been parametrized to reproduce existing experimental gas phase or bulk data. Yet, reliance on empirical parametrization can sometimes introduce limitations with respect to novel chemical systems or uncontrolled errors when moving...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    60
    Citations
    NaN
    KQI
    []