Vacuum Energy Density Measured from Cosmological Data
2021
Within the $\Lambda$CDM cosmological model, the absolute value of Einstein's cosmological constant $\Lambda$, sometimes expressed as the gravitating mass-energy density $\rho_\Lambda$ of the physical vacuum, is a fundamental constant of nature, whose accurate measurement plays a central role in testing some proposed theories of quantum gravity. Several combinations of currently public cosmological data and an assumed flat $\Lambda$CDM cosmological model are used here to make a joint Bayesian inference on the combination of conventional parameters $\Omega_\Lambda h^2$ that corresponds to the absolute physical density $\rho_\Lambda$. In physical units, we obtain $\rho_\Lambda = \left(60.3\pm{1.3}\right)\times 10^{-31}{\rm g/cm^3}$, the most accurate constraint to date, with an absolute calibration of cosmological measurements based on CMB temperature. Significantly different values are obtained with calibrations that use a local distance scale, mainly connected to systematic differences in the value of the Hubble constant. It is suggested that future comprehensive cosmological parameter studies include constraints on the vacuum density.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI