Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles

2009 
Harnessing RNA interference (RNAi) to inhibit hepatitis B virus (HBV) gene expression has promising application to therapy. Here we describe a new hepatotropic nontoxic lipid-based vector system that is used to deliver chemically unmodified small interfering RNA (siRNA) sequences to the liver. Anti HBV formulations were generated by condensation of siRNA (A component) with cationic liposomes (B component) to form AB core particles. These core particles incorporate an aminoxy cholesteryl lipid for convenient surface postcoupling of polyethylene glycol (PEG; C component, stealth/biocompatibility polymer) to give triggered PEGylated siRNA-nanoparticles (also known as siRNA-ABC nanoparticles) with uniform small sizes of 80−100 nm in diameter. The oxime linkage that results from PEG coupling is pH sensitive and was included to facilitate acidic pH-triggered release of nucleic acids from endosomes. Nanoparticle-mediated siRNA delivery results in HBV replication knockdown in cell culture and in murine hydrodynam...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    114
    Citations
    NaN
    KQI
    []