A spectroscopic measurement of galaxy formation timescales with ROLES

2011 
We present measurements of the specific star-formation rate (SSFR)-stellar mass relation for star-forming galaxies. Our deep spectroscopic samples are based on the Redshift One LDSS3 Emission line Survey, ROLES, and European Southern Observatory, ESO, public spectroscopy at z=1, and on the Sloan Digital Sky Survey (SDSS) at z=0.1. These datasets cover an equally deep mass range of 8.5 10) the shapes of the cumulative cosmic SFRDs are very similar at both z=0.1 and z=1.0, both showing 70% of the total SFRD above a mass of log(M*/Msun)>10. Mass functions are constructed for star-forming galaxies and found to evolve by only <35% between z=1 and z=0.1 over the whole mass range. The evolution is such that the mass function decreases with increasing cosmic time, confirming that galaxies are leaving the star-forming sequence/blue cloud. The observational results are extended to z~2 by adding two recent Lyman break galaxy samples, and data at these three epochs (z=0.1, 1, 2) are compared with the GALFORM semi-analytic model of galaxy formation. GALFORM predicts an overall SFR density (SFRD) as a function of stellar mass in reasonable agreement with the observations. The star formation timescales inferred from 1/SSFR also give reasonable overall agreement, with the agreement becoming worse at the lowest and highest masses. [abridged]
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []