p27Kip1 localization depends on the tumor suppressor protein tuberin

2007 
p27 Kip1 plays an important role in cell cycle regulation by inhibiting cyclin-CDK complex activity in the nucleus. p27 Kip1 is regulated by its concentration as well as by its subcellular localization. Tuberin, encoded by the tuberous sclerosis tumor suppressor gene TSC2, is a potent negative cell cycle regulator. We show herein, that tuberin induces nuclear p27 localization by inhibiting its 14-3-3-mediated cytoplasmic retention. Tuberin interferes with 14-3-3's counteracting effects on p27-mediated cell cycle arrest. Akt-mediated phosphorylation of p27, but not of tuberin, negatively regulates tuberin's potential to trigger p27 nuclear localization. In G0 cells, tuberin binds p27 triggering downregulation of p27's binding to 14-3-3 and of its cytoplasmic retention. At transition to S phase p27 is phosphorylated by Akt, tuberin/p27 complex levels are downregulated and binding of p27 to 14-3-3 increases triggering cytoplasmic retention of p27. These findings demonstrate p27 localization during the mammalian cell cycle to be under the control of the tumor suppressor tuberin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    41
    Citations
    NaN
    KQI
    []