Growth, Turgor, Water Potential, and Young's Modulus in Pea Internodes

1967 
The relations between longitudinal growth, Young's modulus, turgor, water potential, and tissue tensions have been studied on growing internodes of etiolated pea seedlings in an attempt to apply some physical concepts to the growth of a well-known plant material. The modulus has been determined by the resonance frequency method and expressed as Etissue It increases nearly proportional to the turgor pressure and is at water saturation more than 50 times higher than at plasmolysis. Etissue is higher in the epidermis than in the ground parenchyma. Indoleacetic acid causes a decrease in Etissue Other properties have been studied on intact and split segments of internodes in solutions of graded mannitol additions. — The following tentative picture of the normal course of the growth has been obtained. Auxin induces growth both in the periphery (epidermis) and in the central core (parenchyma) under a decrease in Etissue This is followed by an increase of Etissue which is independent of auxin but depending upon the turgor pressure. It is assumed to involve internal structural changes of the cell walls of the type of creep. The rapid growth takes place in a dynamic system with a low water potential despite favourable water conditions. Epidermis and parenchyma grow equally rapid without tissue tensions. — Such can be produced artificially by splitting of segments and water uptake. The parenchyma thereby loses its sensitivity to auxin. This is the background of the split stem test for auxin. — Etissue increases when growth is slowing down, probably owing to both synthesis of wall substance and structural changes within the wall. The cells attain a more static condition with Etissue higher in epidermis than in parenchyma. This leads to the normal tissue tensions. — The result agrees with growth according to the multi-net-principle. The cause of the low water potential and low turgor is discussed with reference to the dynamic nature of both growth and water transport and a probably low matric potential of the streaming water. The decrease in Etissue following auxin addition is small but is the net difference between an auxin-induced decrease and an increase through the assumed creep.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    59
    Citations
    NaN
    KQI
    []