Experimental verification of improved printability for litho-driven designs

2006 
The continued downscaling of the feature sizes and pitches for each new process generation increases the challenges for obtaining sufficient process control. As the dimensions approach the limits of the lithographic capabilities, new solutions for improving the printability are required. Including the design into the optimization process significantly improves the printability. The use of litho-driven designs becomes increasingly important towards the 45 nm node. The litho-driven design is applied to the active, gate, contact and metal layers. It has been shown previously, that the impact on the chip area is negligible. Simulations have indicated a significant improvement in controlling the critical dimensions of the gate layer. In this paper, we present our first results of an experimental validation of litho-driven designs printed on an immersion scanner. In our design we use a fixed pitch approach that allows to match the illumination conditions to those for the memory structures. The impact on the chip area and on the CD control will be discussed. The resulting improvement in CD control is demonstrated experimentally by comparing the experimental results of litho-driven and standard designs. A comparison with simulations will be presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []