Deterministic multi-core parallel routing for FPGAs

2010 
We consider coarse and fine-grained techniques for parallel FPGA routing on modern multi-core processors. In the coarse-grained approach, sets of design signals are assigned to different processor cores and routed concurrently. Communication between cores is through the MPI (message passing interface) communications protocol. In the fine-grained approach, the task of routing an individual load pin on a signal is parallelized using threads. Specifically, as FPGA routing resources are traversed during maze expansion, delay calculation, costing and priority queue insertion for these resources execute concurrently. The proposed techniques provide deterministic/repeatable results. Moreover, the coarse and fine-grained approaches are not mutually exclusive and can be used in tandem. Results show that on a 4-core processor, the techniques improve router run-time by ∼2.1x, on average, with no significant impact on circuit speed performance or interconnect resource usage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    30
    Citations
    NaN
    KQI
    []