Anterior Bridging Bone in a Newly Designed Cage for Lumbar Interbody Fusion: Radiographic and Finite Element Analysis.

2021 
Objective To evaluate the distribution of multiple anterior bridging bone (ABB) patterns using a newly designed interbody cage with 4 anterior holes that enable communication between the inside and outside of the cage and to estimate its mechanical effect by finite element analysis (FEA). Methods Patients underwent single-level lumbar interbody fusion using ABB cages. Two raters evaluated the distribution patterns of ABB on computed tomography scans 1 year after surgery. We defined the term H-fusion as the presence of complete anterior extracage and intracage bone bridging, with ≥1 ABBs between them. We performed finite element analysis to investigate the effect of ABB on maximal stiffness. Results The study enrolled 98 patients. ABB was most frequently observed in the medial hole of the cages (73.7%). The mean number of ABBs was 3.65, and H-fusion was observed at 135 levels (34%). Postoperative improvement in the Oswestry Disability Index was significantly higher in patients who achieved interbody fusion and H-fusion than in patients who did not. As ABB was added, the increment in the relative maximal stiffness was most affected under flexion and extension forces. Conclusions We observed an average of 3.65 complete ABBs. Finite element analysis demonstrated that ABB could increase the stability in fused segments, especially under flexion and extension stress. Our results suggest that the ABB cage, which allows communicating cross-bridging between inside and outside of the cage, may facilitate a more stable fusion process than a conventionally designed cage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []