Integral Porosity Estimation of the Sierra de Las Nieves Karst Aquifer (Málaga, Spain)

2015 
Karst aquifers are very complex and heterogeneous systems because of the presence of three kinds of porosity (matrix rock porosity, fracture porosity, and conduit porosity) that generally have a large spatial variability. In order to have realistic karst models the three kinds of porosity and their spatial variability must be taken into account. A quantitative model of a karst aquifer is proposed by integration of the three kinds of porosity in a three dimensional numeric model. Nevertheless, the main task of this work is restricted to the proposal of methods for their evaluation. Matrix rock porosity has been measured in the laboratory from samples collected in the field. Matrix rock porosity is well correlated with the lithology and with the structural position of the rock. Fracture porosity has been estimated from fracture mapping and field measurements. A geostatistical method is used to obtain a continuous field of fracture porosity. Conduit porosity has been calculated from a power model fitted to speleologic cave mapping data. However, because of the scarcity of conduit data, probabilistic models must be conjectured. The integration of the three kinds of porosity gives a three dimensional numerical model that can be used in vulnerability mapping, recharge estimation, and mathematical modeling of flow and transport in karst systems. The approach is illustrated with the Sierra de las Nieves karst aquifer in the province of Malaga in Southern Spain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    2
    Citations
    NaN
    KQI
    []