A Casz1 - NuRD complex regulates temporal identity transitions in neural progenitors

2020 
Neural progenitor cells alter their output over developmental time to generate different types of neurons and glia in the correct sequences and proportions. A number of "temporal identity factors" that control transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how the transcription factor Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal neurogenesis. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As other temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through a common biochemical process to regulate neurogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    4
    Citations
    NaN
    KQI
    []