The role of the carboxyl and amino groups of polyene macrolides in their interactions with sterols and their selective toxicity. A 31P-NMR study

1989 
Abstract The permeability induced by amphotericin B and vacidin A derivatives in large unilamellar lipidic vesicles containing various sterols has been studied using the proton-cation exchange method and 31 P-NMR spectroscopy. Derivatives which have a free ionizable carboxyl group induce biphasic ‘all or none’ permeability typical of channel-forming ionophores, whatever the sterol present. In sterol-free membranes, they have no significant activity. Derivatives which lack a free ionizable carboxyl group exhibit this channel-like mode of action only in membranes containing ergosterol or sterols with an alkyl side like that of ergosterol. In membranes containing cholesterol or sterol whose side-chain is alike, a slow and progressive permeability is observed at high concentrations. This activity is observed in sterol-free membranes as well. Derivatives containing sugars with substituted amino groups always have lower ionophoric activity than those which are unsubstituted. The greatest decrease in activity was observed for N -acetyl derivatives. Substitution of the amino groups has no effect on the mode of action. A model of interaction of polyenes with sterols is presented accounting for the data obtained on vesicles and the observed selective toxicity of polyene derivatives in biological membranes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    84
    Citations
    NaN
    KQI
    []