Continuous transcription initiation guarantees robust repair of transcribed genes and regulatory regions in response to DNA damage

2019 
Inhibition of RNA synthesis caused by DNA damage-impaired RNA polymerase II (Pol II) elongation is found to conceal a local increase in de novo transcription, slowly progressing from Transcription Start Sites (TSSs) to gene ends. Although associated with accelerated repair of Pol II-encountered lesions and limited mutagenesis, it is still unclear how this mechanism is maintained during recovery from genotoxic stress. Here we uncover a surprising widespread gain in chromatin accessibility and preservation of the active histone mark H3K27ac after UV-irradiation. We show that the concomitant increase in Pol II release from promoter-proximal pause (PPP) sites of most active genes, PROMoter uPstream Transcripts (PROMPTs) and enhancer RNAs (eRNAs) favors unrestrained initiation, as demonstrated by the synthesis of short nascent RNAs, including TSS-associated RNAs (start-RNAs). In accordance, drug-inhibition of the transition into elongation replenished the post-UV reduced levels of pre-initiating pol II at TSSs. Continuous engagement of new Pol II thus ensures maximal transcription-driven DNA repair of active genes and non-coding regulatory loci. Together, our results reveal an unanticipated layer regulating the UV-triggered transcriptional-response and provide physiologically relevant traction to the emerging concept that transcription initiation rate is determined by pol II pause-release dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    0
    Citations
    NaN
    KQI
    []