An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection
2014
A unique sensing device, which couples microscale pillars with quartz crystal microbalance (QCM) substrate to form a resonant system, is developed to achieve several orders of magnitude enhancement in sensitivity compared to conventional QCM sensors. In this research, Polymethyl Methacrylate (PMMA) micropillars are fabricated on a QCM substrate using nanoimprinting lithography. The effects of pillar geometry and physical properties, tuned by molecular weight (MW) of PMMA, on the resonant characteristics of QCM-micropillars device are systematically investigated. It is found that the resonant frequency shift increases with increasing MW. The coupled QCM-micropillars device displays nonlinear frequency response, which is opposite to the linear response of conventional QCM devices. In addition, a positive resonant frequency shift is captured near the resonant point of the coupled QCM-micropillars system. Humidity detection experiments show that compared to current nanoscale feature based QCM sensors, QCM-mic...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
29
Citations
NaN
KQI