SS31 Ameliorates Sepsis-Induced Heart Injury by Inhibiting Oxidative Stress and Inflammation
2019
Sepsis-induced myocardial dysfunction (SIMD), lack of effective treatment, accounts for high mortality of sepsis. Mitochondrion-targeted antioxidant peptide SS31 has been revealed to be responsible for certain cardiovascular disease by ameliorating oxidative stress injury. But whether it protects a septic heart remains little known. This study sought to prove that SS31 was capable of improving sepsis-induced myocardial dysfunction dramatically. C57BL/6 mice were intraperitoneally administered lipopolysaccharide (LPS), exposed to systemic inflammation. Thirty-five C57BL/6 mice were randomly divided into four groups: sham group, LPS group (5 mg/kg), SS31 group (5 mg/kg), and SS31 + LPS group (treatment group). Heart tissues were harvested for pathological examination at the indicated time points. H9C2 cell were treated with LPS with or without the presence of SS31 (10 μM) at 37 °C to assess the effect on cardiomyocytes at the indicated time points. SS31 restored myocardial morphological damage and suppressed inflammatory response as evidenced by significantly decreasing the mRNA levels of IL-6, IL-1β, and TNF-α in vitro and in vivo. In addition, myocardial energy deficiency secondary to sepsis was remarkedly ameliorated by SS31. Furthermore, we found that SS-31 normalized the activity of malondialdehyde, glutathione peroxidase, and superoxide dismutase in vitro and in vivo, and maintained mitochondrial membrane potential (MMP) as well. And western blot was applied to measure the expressions of p-p38MAPK, p-JNK1/2, p-ERK, p62, and NF-κB p65; the results illuminated that the cardioprotective effect of SS31 was partly linked to NF-κB. In conclusion, SS31 therapy effectively protected the heart against LPS-induced cardiac damage.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
20
Citations
NaN
KQI