Tunable spin-valley coupling in layered polar Dirac metals

2021 
In non-centrosymmetric metals, spin-orbit coupling induces momentum-dependent spin polarization at the Fermi surfaces. This is exemplified by the valley-contrasting spin polarization in monolayer transition metal dichalcogenides with in-plane inversion asymmetry. However, the valley configuration of massive Dirac fermions in transition metal dichalcogenides is fixed by the graphene-like structure, which limits the variety of spin-valley coupling. Here, we show that the layered polar metal BaMnX2 (X = Bi, Sb) hosts tunable spin-valley-coupled Dirac fermions, which originate from the distorted X square net with in-plane lattice polarization. We found that BaMnBi2 has approximately one-tenth the lattice distortion of BaMnSb2, from which a different configuration of spin-polarized Dirac valleys is theoretically predicted. This was experimentally observed as a clear difference in the Shubnikov-de Haas oscillation at high fields between the two materials. The chemically tunable spin-valley coupling in BaMnX2 makes it a promising material for various spin-valleytronic devices. Spin-orbit coupling in non-centrosymmetric crystals gives rise to interesting spin-momentum locking of the Fermi surface. Here, the electronic structure of polar metals BaMnX2 (X = Bi, Sb) reveals a high sensitivity to X sublattice distortions, resulting in a chemically tunable spin-valley coupling of Dirac fermions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []