Influence of surface commensurability on the structure and relaxation dynamics of a confined monatomic fluid

2018 
Molecular dynamics simulations are carried out for a single component, monatomic Lennard-Jones fluid confined between two mica surfaces to investigate the structure and relaxation dynamics of the confined fluid as a function of surface separation. Due to the underlying symmetry of the potassium ions on the mica surface, the contact layers prefer to adopt an incommensurate square or rhombic symmetry. The inner layers adopt a symmetry varying between rhombic, triangular, and square, depending on the density and surface separation. When the surface separation is an integral multiple of the particle diameter, distinct layering is observed, whereas jammed layers are formed at intermediate surface separations. This leads to the formation of both commensurate and incommensurate layering with varying intralayer symmetry. The self-intermediate scattering function exhibits a gamut of rich dynamics ranging from a distinct two-step relaxation indicative of glassy dynamics to slow relaxation processes where the correl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    11
    Citations
    NaN
    KQI
    []