Protection induced by estradiol benzoate in the MPP+ rat model of Parkinson's disease is associated with the regulation of the inflammatory cytokine profile in the nigro striatum.

2020 
Abstract Previously, we have demonstrated that β-estradiol-3-benzoate (EB) has a protective effect on the neurodegenerative experimental model of Parkinson's disease. The protective effect is through the induction of the expression of paraoxonase-2 (PON2) in the striatum. PON2 has proven to have antioxidant and anti-inflammatory activity, this protein has a beneficial effect in MPP+ model in rats decreasing the lipid peroxidation and the oxidative stress. Furthermore, the molecular effect and the pathway by which EB induces protection were not further pursued. This study shows the regulation by EB of the anti-inflammatory effect through the modulation of cytokines, antioxidant enzymes and PON2 in the rat striatum. Rats were gonadectomized and 30 days after were randomly assigned into four experimental groups; only vehicles (Control group); EB treatment (EB group); MPP+ injury (M group); EB plus MPP+ injured (EB/M group). EB treatment consisted of 100 μg of the drug administered every 48 h for 11 days. Results showed that EB (group EB/M) treatment decrease significantly (40%) the number of ipsilateral turns respect to the M group and prevents significantly the dopamine (DA) decreased induced by MPP+ (~75%). This results are correlate with a significant decrease in the level of lipid peroxidation (60%) of the EB/M group respect to the M group. The EB treatment showed protection against neurotoxicity induced with MPP+, this could be due to EB capacity to prevent the increase in the expression level of proinflammatory cytokines TNF-α, IL-1 and IL-6 induced by MPP+. While, TGF-β1 and TGF-β3 expression was reduced in the rats treated only with MPP+, in the rats of EB/M group the expression of both cytokines was increased. EB protective effect against MPP+ neurotoxicity is related to antioxidant effect of PON2, pro-inflammatory cytokines and GSHR but not to SOD2, catalase, GPX1 or GPX4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []