Interplay between aggregation number, micelle charge and hydration of catanionic surfactants

2020 
Catanionic mixtures are commonly in applications due to synergetic properties of both cationic and anionic surfactants. To better understand the mechanism of the micellization process of salt-free catanionic surfactants, alkyltrimethylammonium alkanecarboxylates, [CxMe3N]+[Cy]-, with a medium to long alkyl chains on both cation and anion (x,y = 6-10), were investigated in aqueous solution by density and zeta potential measurements, isothermal titration calorimetry (ITC), and dielectric relaxation spectroscopy (DRS). The obtained ITC data was analysed with the help of a two-step model equation, yielding the thermodynamic parameters, micelle charge and aggregation numbers. Comparison with the “parent” decyltrimethylammonium chloride and sodium decanoate reveals combined dehydration of both alkyl chains increases entropy upon micellization. In the first step neutral smaller micelles with partly dehydrated alkyl chains are formed, while in the second step larger charged micelles with fully dehydrated alkyl chains are equally favourable. At low temperature both formations are thermodynamically equivalent, while with increasing temperature neutral micelles become more entropically favourable and charged micelles more enthalpically favourable. The resulting average micelle charge and average aggregation number are decreasing with temperature. From the DRS spectra, effective hydration numbers of the free monomers and micelles were deduced and are comparable to the “parent” cationic surfactant micelles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []