Neutron imaging with a Micromegas detector

2006 
The micropattern gaseous detector Micromegas has been developed for several years in Saclay and presents good performance for neutron detection. A prototype for neutron imaging has been designed and new results obtained in thermal neutron beams are presented. Based on previous results demonstrating a good 1D spatial resolution, a tomographic image of a multiwire cable has been performed using a 1D Micromegas prototype. The number of pillars supporting the micromesh is too large and leads to local losses of efficiency that distort the tomographic reconstruction. Nevertheless, this first tomographic image achieved with this kind of detector is very encouraging. The next worthwhile development for neutron imaging is to achieve a bi-dimensional detector, which is presented in the second part of this study. The purpose of measurements was to investigate various operational parameters to optimize the spatial resolution. Through these measurements the optimum spatial resolution has been found to be around 160 microns (standard deviation) using Micromegas operating in double amplification mode. Several 2D imaging tests have been carried out. Some of these results have revealed fabrication defects that occurred during the manufacture of Micromegas and that are limiting the full potential of the present neutron imaging system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []