Time-resolved laser-induced fluorescence diagnostics for electric propulsion and their application to breathing mode dynamics

2018 
Several techniques have been developed recently for performing time-resolved laser-induced fluorescence (LIF) measurements in oscillating plasmas. One of the primary applications is characterizing plasma fluctuations in devices like Hall thrusters used for space propulsion. Optical measurements such as LIF are nonintrusive and can resolve properties like ion velocity distribution functions with high resolution in velocity and physical space. The goals of this paper are twofold. First, the various methods proposed by the community for introducing time resolution into the standard LIF measurement of electric propulsion devices are reviewed and compared in detail. Second, one of the methods, the sample-hold technique, is enhanced by parallelizing the measurement hardware into several signal processing channels that vastly increases the data acquisition rate. The new system is applied to study the dynamics of ionization and ion acceleration in a commercial BHT-600 Hall thruster undergoing unforced breathing mode oscillations in the 44–49 kHz range. A very detailed experimental picture of the common breathing mode ionization instability emerges, in close agreement with established theory and numerical simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    14
    Citations
    NaN
    KQI
    []