Genome-Wide Bacterial Toxicity Screening Uncovers the Mechanisms of Toxicity of a Cationic Polystyrene Nanomaterial

2012 
By exploiting a genome-wide collection of bacterial single-gene deletion mutants, we have studied the toxicological pathways of a 60-nm cationic (amino-functionalized) polystyrene nanomaterial (PS-NH2) in bacterial cells. The IC50 of commercially available 60 nm PS-NH2 was determined to be 158 μg/mL, the IC5 is 108 μg/mL, and the IC90 is 190 μg/mL for the parent E. coli strain of the gene deletion library. Over 4000 single nonessential gene deletion mutants of Escherichia coli were screened for the growth phenotype of each strain in the presence and absence of PS-NH2. This revealed that genes clusters in the lipopolysaccharide biosynthetic pathway, outer membrane transport channels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair systems are all important to how this organism responds to cationic nanomaterials. These results, coupled with those from confirmatory assays described herein, suggest that the primary mechanisms of toxicity of the 60-nm PS-NH2 nanomaterial in E. coli are des...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    43
    Citations
    NaN
    KQI
    []