Shared dynamical features of smooth- and rough-wall boundary-layer turbulence

2016 
The structure of smooth- and rough-wall turbulent boundary layers is investigated using existing data and newly acquired measurements derived from a four element spanwise vorticity sensor. Scaling behaviours and structural features are interpreted using the mean momentum equation based framework described for smooth-wall flows by Klewicki (J. Fluid Mech., vol. 718, 2013, pp. 596-621), and its extension to rough-wall flows by Mehdi et al. (J. Fluid Mech., vol. 731, 2013, pp. 682-712). This framework holds potential relative to identifying and characterizing universal attributes shared by smooth- and rough-wall flows. As prescribed by the theory, the present analyses show that a number of statistical features evidence invariance when normalized using the characteristic length associated with the wall-normal transition to inertial leading-order mean dynamics. On the inertial domain, the spatial size of the advective transport contributions to the mean momentum balance attain approximate proportionality with this length over significant ranges of roughness and Reynolds number. The present results support the hypothesis of Mehdi et al., that outer-layer similarity is, in general, only approximately satisfied in rough-wall flows. This is because roughness almost invariably leaves some imprint on the vorticity field; stemming from the process by which roughness influences (generally augments) the near-wall three-dimensionalization of the vorticity field. The present results further indicate that the violation of outer similarity over regularly spaced spanwise oriented bar roughness correlates with the absence of scale separation between the motions associated with the wall-normal velocity and spanwise vorticity on the inertial domain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    4
    Citations
    NaN
    KQI
    []