Bioprintable, Stiffness-Tunable Collagen-Alginate Microgels for Increased Throughput 3D Cell Culture Studies.

2021 
3D culture platforms with tunable stiffness have the potential to improve many applications, such as drug discovery, organoid studies, and stem cell differentiation. Both dimensionality and stiffness regulate crucial and relevant cellular processes. However, 3D culture models are often limited in throughput and difficult to adopt for widespread use. Here, we demonstrate an accessible 3D, stiffness-tunable tissue culture platform, based on an interpenetrating network of collagen-1 and alginate. When blended with polymers that induce phase separation, these networks can be bioprinted at microliter volumes, using standard liquid handling infrastructure. We demonstrate robust reproducibility in printing these microgels, consistent tunability of mechanical properties, and maintained viability of multiple printed cell types. To highlight the utility and importance of this system, we demonstrate distinct morphological changes to cells in culture, use the system to probe the role of matrix mechanics and soluble factors in a collagen contraction assay, and perform a prototype viability screen against a candidate chemotherapeutic, demonstrating stiffness-dependent responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []