Dynamics of moisture diffusion and adsorption in plant cuticles including the role of cellulose.

2021 
Food production must increase significantly to sustain a growing global population. Reducing plant water loss may help achieve this goal and is especially relevant in a time of climate change. The plant cuticle defends leaves against drought, and so understanding water movement through the cuticle could help future proof our crops and better understand native ecology. Here, via mathematical modelling, we identify mechanistic properties of water movement in cuticles. We model water sorption in astomatous isolated cuticles, utilising three separate pathways of cellulose, aqueous pores and lipophilic. The model compares well to data both over time and humidity gradients. Sensitivity analysis shows that the grouping of parameters influencing plant species variations has the largest effect on sorption, those influencing cellulose are very influential, and aqueous pores less so but still relevant. Cellulose plays a significant role in diffusion and adsorption in the cuticle and the cuticle surfaces. The plant cuticle provides a barrier between internal leaf tissues and the environment. Here the authors develop a mathematical model of water movement through the cuticle and describe a prominent role for cellulose in controlling the dynamics of moisture diffusion and adsorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []