Radiation rebound and quantum splash in electron-laser collisions

2019 
The radiation reaction (RR) is expected to play a critical role in light-matter interactions at extreme intensity. Utilizing the theoretical analyses and three-dimensional (3D) numerical simulations, we demonstrate that electron reflection, induced by the RR in a head-on collision with an intense laser pulse, can provide pronounced signatures to discern the classical and quantum RR. In the classical regime, there is a precipitous threshold of laser intensity to achieve the whole electron bunch rebound. However, this threshold becomes a gradual transition in the quantum regime, where the electron bunch is quasi-isotropically scattered by the laser pulse and this process resembles a water splash. Leveraged on the derived dependence of classical radiation rebound on the parameters of laser pulses and electron bunches, a practical detecting method is proposed to distinguish the quantum discrete recoil and classical continuous RR force.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    1
    Citations
    NaN
    KQI
    []