TRPM4 conductances in thalamic reticular nucleus neurons generate persistent firing during slow oscillations.

2020 
During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow ( SIGNIFICANCE STATEMENT Slow forms of thalamocortical rhythmic activity are thought to be essential for memory consolidation during sleep and the efficient removal of potentially toxic metabolites. In vivo, thalamic slow oscillations are regulated by strong bidirectional synaptic pathways linking neocortex and thalamus. Therefore, in vitro studies in the isolated thalamus offer important insights about the ability of individual neurons and local circuits to generate different forms of rhythmic activity. We found that circuits formed by GABAergic neurons in the thalamic reticular nucleus (TRN) and glutamatergic relay neurons in the ventrobasal thalamus generated slow oscillatory activity, which was accompanied by persistent firing in TRN neurons. Our results identify both cell-intrinsic and synaptic mechanisms that mediate slow forms of rhythmic activity in thalamic circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    6
    Citations
    NaN
    KQI
    []