Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

1991 
Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    42
    Citations
    NaN
    KQI
    []