Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles

2015 
Mn2+ doped (1–5 and 10 %) CdS nanoparticles have been synthesized by the chemical precipitation method using polyvinylpyrrolidone as a capping agent. The particle size, morphology and optical properties have been studied by X-ray powder diffraction, transmission electron microscopy, UV–Visible and photoluminescence spectroscopy. Powder diffraction data have confirmed that the crystallite size is around 2–5 nm. The band gap of the nanoparticles has been calculated using UV–Visible absorption spectra. An optimum concentration, Mn2+ (3 %) has been selected by optical study. The functional groups of the capping agent have been identified by fourier transform infrared spectroscopy study. The presence of dopant (Mn2+) has been confirmed by electron paramagnetic resonance spectroscopy. Thermal properties of CdS:Mn2+ have been analyzed using thermogravimetric–differential thermal analyser. The electrochemical properties of the undoped and doped samples have been studied by cyclic voltammetry for electrode applications. In addition, magnetic properties of Mn2+ doped CdS have been studied using a vibrating sample magnetometer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    6
    Citations
    NaN
    KQI
    []